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A B S  T RAC T 

In studies of electromagnetic wave propagation and radiation in  magneto- 

plasmas, the wave equation takes  the form of a dyadic-vector Helmholtz 

equation. The investigation here shows that the dyadic-vector Helmholtz 

equation is solvable by the separation method in four cylindrical coordinate 

systems.  Solutions in the form of complete sets of eigenfunctions a re  possible 

when boundary surfaces a re  present. For problems involving current sources 

in the plasma, the Green's dyadics for finite or semifinite domains can  be 

constructed from the complete sets of eigenfunctions which a re  solutions to 

the homogeneous equation. The Green's dyadic for infinite domain is also 

shown to be obtainable from that for a semifinite domain through a limiting 

process .  
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I N T R O D U C T I O N  
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The presence of a static magnetic field in  a plasma region results in an 

effective electric conductivity which is of dyadic form. Assuming monocho- 

matic waves ,  the equation describing the waves,  generated by a source,  4 , c 

in such an  anisotropic medium may be written as- 

= 
Written in matrix form, the dyadic k is 

Assuming spatial homogeneity, the parameters kL , kT, and 4,, are  constants 

with respect to t i m e  and space  coordinates. 

Solutions for E q .  (1) in terms of auxiliary Green's function for infinite 

domain have been discussed by Bunkin(l) and subsequently extended by Chow (2) 

and Brandstater. (3) However, the solutions of E q .  (1) for a bounded region 

have proved to be more difficult to obtain. The studies dea l t  with here reveal 

that ,  in order to solve for a finite domain or semifinite domain Green's function, 

a better understanding of the free wave equation, J2 =: 0 in Eq. (1) , is 
- 

needed,  and that the Green's function may be constructed from the solutions 

of the  homogeneous equation. 

(1) F. V .  Bunkin, Soviet Phys., JETP,5, 277, (1957). 

(2) Y. Chow, Trans. I.R.E., AP-10, 464, (1962). 

(3) J .  J .  Brandstater, An Introduction to Waves,  Rays, and Radiation 
in Plasma, (McGraw-Hill Book Company, Inc, , New York, 1963) Chapter 9.  
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THE HOMOGENEOUS EQUATION 

The homogeneous equation describing free wave propagation is 

- - 
E q .  (3) is seen to resemble a vector Heimhoi'cz equation except that .k is a 

dyadic. It is well  known that the scalar Helmholtz equation is separable in 

eleven coordinate systems,  and that the vector Helmholtz equation is 

separable in only six coordinate systems. (4). Despite the fact that the dyadic- 

vector Helmholtz equation has been frequently encountered in connection with 

the studies of crystal  materials and plasma f ie lds ,  and that its solutions have 

been obtained and used extensively for problems involving boundaries in the 

rectangular coordinate systems and the circular cylindrical coordinate 

systems , (5' 6 '  7, additional investigation into the separability of the dyadic- 

vector Helmholtz equation is desirable. The separability of Eq. (3) will  be 

studied here, s ince by determining the coordinate systems in which this equation 

is separable one not only gains  the knowledge of exactly in what coordinate 

systems the equation is solvable by a separation method, but one also hope- 

fully attempts solutions in the form of eigenfunctions when boundaries a re  

involved. The eigenfunction solutions will be of great help in constructing the 

finite domain or semifinite domain Green's dyadics 

(4) P .M.  Morse,  and H. Feshbach, Methods of Theoretical Physics,  

(5) W.P. A l l i s  S. J. Buchsman, and A. Bers Waves in Anisotropic Plasmas, 

(6) H. Suhl, and L. R. Walker, Bell System Tech, J. I 33, 579-939-1133, 

(7) A.A, Th.M. van Trierp Appl, Sc. Research (Netherland) ,B3, 305, (1953) 

(McGraw-Hill Book Company, Inc ,,, New York , 1953) Vol  

(M.I.T. Press,  Cambridge, Massachusetts,  1963) Part 

(1954). 

11, Chapter 13 

11. 
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In the application of boundary value problems, 

that  conveniences the fitting of boundary surfaces is 

4 

separation into 'the fo'm 

m o s t  desirable, Hence, 

it is advisable to separate this dyadic-vector Helmholtz equation in terms of 

longitudinal, L , and transverse, /Vl and N vector components. 
- L - 

The first term in Eq. (3) is a vector operating term, OX VX A review 

of the separability of a vector Helmholtz equation shows that the coordinate 

system in which this vector operating term facil i tates separatior. must be a 

coordinate system in which one of the sca l e  factors is unity, and that the ratio 

of the remaining two scale factors m u s t  be independent of the coordinate corres- 

ponding to the unity scale factor. The six coordinate systems which m e e t  these  

requirements are  the spherical 

systems e 

the conical and the four cylindrical coordinate 

Pertaining to magnetoactive plasma, Eq. (2) implies that  the static 

magnetic field is in the direction parallel or anti-parallel to the coordinate 

corresponding to the unity scale factor. Without losing generality, this coordi- 

nate  is denoted f3  , and its unit vector, c3 A close examination shows 

that only four out of the six coordinate systems are  physically realizable for 

such alignment of the s ta t ic  magnetic field: namely, the four cylindrical coordi- 

nate systems including the rectangular, the circular cylindrical I the elliptical 

cylindrical , and the parabolic cylindrical coordinate systems In each system 

f corresponds to the 2 axis .  

It may first seem to be pessimistic that the number of permissible coordinate 

Fortunately, systems has  been reduced to only four from eleven right a t  the onset. 

however, it turns out that no other restriction will be imposed that further reduces 

the number of permissible coordinate systems 
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.In attempting the solution of Eq. (3), the difficulty lies in the fact that 

each term in the equation is a purely transverse vector, while due to the dyadic 

, the vector field, , in general, is not entirely transverse. Since 

it is desirable to separate the equation in terms of transverse and longitudinal 

components, E 
- 

must be expressed in terms of a l l  three vector components - - - 
L , M and h/ , i .e.: 

where 4 , yJ 
subscript I, 

, and 3( are  three scalar  functions to be determined. The 

indicates the components of operator or vector which a re  perpen- 

- 
dicular to fi, , whereas /I indicates parallel to  A, . 

- -  
Expanding ;7? e E into vector form, Eq. (3) may be broken into two 

equations, one contains the -vectors, the other contains the 11 -vectors ., 

It is a l s o  recognized that Eq. (3) i m p l i e s -  

which yields a third equation. After some manipulation, the three basic 

equations become. 



.Close examination of Eqs. (6) to (8) shows that solutions may be obtained 

i f  the three scalar  functions each satisfies:  

or 

and 

with 

iioaj 

2 where 

E q s .  (9) or (1Oc) must sat isfy an eighth order determinant equation 

4' is the separation constant for separation of 
4 3  Tm i n  m 

I k+ (T i -k : )  tk,,-k,X~,'- h i )  k ( T ~ - ~ ~ J + k i ' G !  

The order of Eq. (11) appears to be too high to be readily solved a t  first, but 

it turns out that  the resulting secular equation is only of fourth order in Tm I 
2 a P 

s ince  the other four roots, Tm= k,,, , and Tn, = o I are  trivial and may be 

discarded. The secular equation yield by Eq. (11) is 

9 
Eq.  (12) may be readily solved for Tm in terms of k: or for .k,' in 

terms of Tm 
b 

2 
depending upon the manner of the boundaries set up in the 

problem. Let the solutions of the scalar functions b e  
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If the boundaries a re  parallel to the 5, = constant silrfaces, %/ , >,, 
and 4, a re  sets of eigenfunctions and +,,,, a re  the  eigenvalues with 

index Ir, : then 5, , obtained from Eqs . (12) and (1Oc) , will describe 

the dispersion relation for propagation in the ( e , ,  5, ) space, Conversely, 

i f  the boundary surfaces a re  perpendicular to 5, = constant surfaces ,  0' , 
2L , and @L will consis t  of sets of eigenfunctions with bh, consisting 

of the eigenvalues. 8, , ?,, , and d,, describe the prop,agation in a 
3 

direction with hm being the parameter describing the dispersion relation 

In either caBe there will  be another eigenvalue with index Q , resulting from 
the separation of Eq. (lob) 

when the boundary is a completely self-enclosed one, there are three sets of 

eigenvalues with indices m , and -4 The solutions f' I 3( 
and $ a re  not entirely independent, By substitution of E q s ,  (13) to (15) into 

E q s .  (6) to (8) , it is possible to obtain a functional relation between the 

constants  A, B, and C, thus reducing the number of arbitrary constants to one. 

which is not apparant in E q s  ., (13) to (15). Of course,  

Without restricting the  generality of the two succeeding sections on the 

inhomogeneous equation and the Green's function, and on the  infinite domain 

Green's dyadic, a readily understandable illustration is that of a plasma region 

bounded by two parallel, infinitely large, conducting plates of finite separation, 

d- 8 with a static magnetic f ie ld  imposed upon the plasma in the direction 

normal to the boundary plates,  The solution for outgoing waves can  be found in 

a circular cylindrical coordinate system. Assuming the origin of the coordinate 

system is located midway between the  plates 



with two sets of eigenvalues ,' i..> e, 

R = o , f / ,  f 2 ,  - -  - -  J 

I 

As s ta ted above, functional relations between 

be obtained by substituting Eqs 

or  &h'J when summed on 

Am,, , , and c,, may 

(16) to (18) into Eqs, (6) to (8) Since &a k$ 
& consti tutes a complete set of eigen- 

functions , this  complete set is a complete solution of Eq, (lob) Also, the 

functions e when summed on yield a complete set of eigen- 

functions that satisfies an  equation resulting from separation of B from 

Eq. (loa). Therefore , by virtue of the completeness theorem for several  

variables , (8) the functions Ltl/ , , and C$ as  shown in Eqs. (16) 

to (18) are complete sets which satisfy Eq. (9). Consequently, the wave field 
1 

, obtained from Eq, (4) , having three orthogonal components , namely 

% ~ ( ~ , * ~ ~  0 $) J and ~ ~ ( ~ ' ~ + ~ , ' ~ ~ ) ,  with each - 
nent consisting of complete sets,must by itself be complete. Hence, E so 

obtained is a complete solution to Eq. (3). In addition, it can also be shown 

(8) See for example, R. Courant, and D o  Hilbert, Methods of 
Mathematical Physics, (Interscience Publishers , Inc. , New York, 1953) 
V o l .  I ,  p. 56. 
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that  for a physically realizable problem , the boundasy conditions require 

either the tangential component of electric field or the tangential component 

of the magnetic field vanishes at the boundary; from this ,  the solution 

obtained by Eq. (4) can be proved to be unique. 9) 

INHOMOGENEOUS EQUATION AND THE GREENn S FUNCTION 

7 When a source Jg('C) is presented in the bounded region, it can  be shown 

that Eq. (1) is solvable in terms of an integral representation 

- 
where the kernel G( 71 6 )  is the usual Greeno s dyadic function except that  

instead of satisfying Eq, (1) with a dyadic impulse source, it satisfies the 

following; 

c c 
5 =  

V X ~ X  L E -kbG =3&+6jF 
where 9 is the idemfactor and & is the conjugate of s The 

c 
5 =  

V X ~ X  L E -kbG =3&+6jF 
where 9 is the idemfactor and & is the conjugate of s The 

u s e  of the conjugate of 

include the c a s e s  where 

in Eq. (21) is necessary i f  it is desired to 

is not Hermitian, (see Appendix), In addition 

to  satisfying Eq. (21), the Green's function must a l so  satisfy the same boundary 

condition that the field satisfies.  

The derivation of a Green's function to  be discussed here depends upon 

whether there are  boundary surfaces parallel to the & 2. surface, For 

(9) See for example, J. A, Stratton I Electromaqnetic Theory, (McGraw- 
Hill Book Company, Inc. , New York, 1941) pp. 486-488. 
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brevity, only the case with boundasy surface parallel to the s=c...f. ' susfa'ce 

will be derived here. It is assured tha t  the  Green's dyadic for the case of no 

boundary surface parallel to t3=CbnJ. surface may a l so  be derived with the 

same technique , except for some minor modifications , 

In view of the form of the solutions to the homogeneous equation, and in  

view of the fact that the three sca la r  functions are  not independent functions, 

it is proposed that the Green's dyadic takes  the form. 

where 

- - - 
and are  functions of source Fmn G,, where 

coordinates only. 

cprn A is a two-variable function of variables $, and qZ , 

satisfying Eq,  (loa). The c3 dependent functions f-, and gm are  

the two independent solutions of Eq, (lob); their relation is dictated by 

whether there is a closed or open boundary in c3 For the case of closed 

boundary i n  c3 , the relation is 



The choice of 

condition and 

upper or lower sign in  Eq. (2 6) 

the choice of coordinate origin 

11 

depends on the type of boundary 

in the problem. To be general, 

both signs will be kep t  throughout this derivation. Finally, the index 2 in  

E q s .  (23) to (25) may be a single index or a double index, depending upon 

whether the boundary perpendicular to 5 is open or closed. 3 
L 

The vectors 3 ,  and L a re  not necessarily 
4 

orthogonal in space ,  but qFm,,8z3 vL qmn and a, are  three 

orthogonal vectors If a unit vector 6 , and a two-variable-dependent 

function p,, ( {, , (+ 1 are  defined such that 

- 
c 

then the unit vectors b , b X , and 6, are mutually 
- c 

orthogonal in space.  Multiplication of these unit vectors b b X z3 
- 

and cia in turn into Eq ,  (20) yields a set of three mutually orthogonal 

equations; 

In E q s  

The operator v2 
coordinate functions only, i , e ,  (K,,fh) Or (~!,,~,) 0 When operation 

(28) to (30) the relation given by Eqs (22)  to (263 has been substituted. 

is a three dimensional operator operating on the observer 
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on the source coordinate is needed, the  operators will  be distinguished by a super- 

script 0 

In order to express the t3' dependent functions 

express the source coordinate functions in component form, 

explicitly, and to  

and Hmn m a y  be assumed: 

After some vector manipulations, Eqs. (28) to (30) a r e  broken into a set of nine 

sixth order equations 

c 

\- c 

~ - ! ~ ~ ~ l l l ~ , , ~ ~ , , ~ ~ ~ , ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~  k+,{ G+ (++kif\ ( rmmfm) hci-ic,j, 
In, n l\l,l\ 

(40) 

where the operator 

to be operating on any one of the two or three observer coordinate functions 

is an observer coordinate operator, it can  be considered 
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immediately to its right: 

2 
where 7: 2nd rm are the two non-trivial roots of ~ q ,  (121- In view of 

Eq.  (9), all operators v2 to the right of the equality sign in  Eqs e (32) to (40) 

z 
are replaced by (- T, ) Substitute Eq. (41) into Eqs, (32) to 640) and drop 

out the functions common to both s ides  of the equality sign. Multiply both s ides  

by -F, or gm ' , whichever one is appropriate. Then integrate over the 

entire bounded <3 space, utilizing the orthogonal properties of the eigen- 

functions f, and 

+ 

4m 

where && is the normalization factor. The aster isk (*) indicates the complex 

conjugate. The integration yields distinct solutions for the 5," dependent 

functions I 

3v are  one dimensional scalar  Green's function, both satisfying 
fmc 5 3  %n cs; 

a one dimensional equations 
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After integrating out the f3 and <; dependent functions, Eqs. '(32) 

to (40) become convenient two dimensional simultaneous equations involving 

( 5 1 1  %-a and t2') only. It may be demanded that 

and 

i - -  {vi+ f&~m,,?mv,~ b b = 5: (a2* I$-, 111 %. 67in 11 > (4 61 
where the two double bars bracketing a function indicates only the scalar  is being 

considered. xll and Qm4represent anyone of the ($,: f > functions corresponding to 

e,, and Qmn respectively . With E q s .  (45) and (46), all nine equations in 

Eqs. (32) to (40) may be represented by one symbolic equation; 

{v:+ ~ - h : ]  j,,,~z,,s.Icp,t:) = ( c o n ~ ~ ) ~ ~ ~ , - 5 P , ~ ~ 5 1 - 5 + 0 ) ,  

One thus has reduced the problem of solving the Green's dyadic to one of 

(4 7) 

searching for a n  appropriate two-dimensional sca la r  Green's function Exact 

solutions of Eq .  (47) depend upon the coordinate systems employed and the type 

of boundary perpendicular to g = t o n ~ / .  

be written symbolically 

surfaces considered. In general, it can  

N 

v?b.,q%& cp,,,&: 0 for closed boundary in L ,' 

Tu 

In the case of a closed boundary in I- , is the 

2 . 2  and A> are  the 
complex conjugate of ymn4 ; and 3"=A0n, I A; 

/y 

two normalization factors. In the case of a n  open boundary, $&,, and %n 

are  the two independent solutions of E q .  (loa) and f is a constant involving 
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the Wronskian of the two independent solutions. Ler 

15 

for closed boundary in I ,' 

(4 9) 
for open boundary in  L .  

The complete Green's dyadic is found to be 

Symbolically, Eq. (50) may be written a s "  

" - 
where a re  the space coordinate differential operators i o  e. 
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16 
AJb, Q, , .and vL ; and 5 (km,yJ are  the algebraic functions shown i n  E q .  (50); 

the indices and run on the terms corresponding to the vectors , 
- 
b , and . 

In the circular cylindrical coordinate system with open boundary in r and 

e , the solution for E q .  (47) is:. 

E q s .  (16) to (188 the Green’s dyadic valid for the case of two parallel conducting 

plates is (for c 2 r, only) 
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THE INFINITE DOMAIN G E E N U S  DYADIC 

The transition of finite OF semifinite domain Green's dyadic to the  infinite 

domain Green's dyadic may be obtained through a limiting process,  Since the 

infinite domain Green's function has  been derived by a number of authors and 

!1,2,3) employed extensively,  no attempt will  be made here to derive the infinite 

domain Green's dyadic into its final form. The main purpose here is to show that  

such transition is possible,  

As  a n  example, take the Green's dyadic of the two parallel plates case 

given in Eq .  (53). As the plates recede to infinity, i.e. d-+ w the sum- 

mation on 

the transformed infinite domain Green's dyadic,  f CF I Fo ) , is: 

goes over to a n  integral. Written in the symbolic form of Eq. (51) o 

c 

In Eq. (54) the order of integration and differentiation operations has  been inter- 

changed and the subscript  M has  been dropped. Evidently, the Green's dyadic I 

for infinite domain can be obtained through a set of auxiliary sca la r  functions, 

, as represented by the integral in Eq, (54). In view of Eq. (521, Eq. (441, 

and the fact that f f' is an  even function, after using the addition theorem 

to perform the summation on ?I , may be written 

where 

(551 

It should be noted that the new coordinate system has its origin at the source 

point. This choice of a new origin may require subsequent transformation back 



tor the original origin. 
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An exact solution of E q .  (55) i s  tedious and is not easi ly  attainable; how- 

ever, an  asymptotic solution which is valid for waves at  large distance from 

the source may be obtained through the method of steepest descent.  

Assuming that interest  is in the accuracy of the solution only to the order 

, the zero order Hankel function may be expanded into its asymptotic i of - 
r,’ 

form. Retaining only the first term, Eq. (55) then becomes, 

At  this point, it would deem more convenient to change the coordinate system 

from that of circular cylindrical coordinates to that of spherical coordinates 

( f? , y ,d 1; where 
/ 1 - 1  z ,4.L+: 1 y, 

3’ = c-cfi ‘y , 
Under the new coordinate sys t em,  Eq.  (56) becomes 

It is recalled that,  

IT- is therefore the total  propagation factor. Now for the sake of convenience, 

instead of I a new integration parameter, I may be employed, such 

that 

The parameter has  the same significance as the angle which measures the 
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* w'ave normal if  T is a constant; however, in the present case is not 

a constant. In fact, combining Eq, (121, Eq. (58) and Eq. (59) yields a n  expres- 

sion for T in terms of 7 

2 -[koa -k& &3A2Y+ 2AA, f ~ ~ ( ~ - k , ) - ~ ~ ~ ~ * i - + ~ ' ~ ~ ~ a ~ ~  hi TJ2 = 
3[4L &+z?+46,m?7-.] / b o )  

where, the subscript / and 2 on 7' represents the choice of plus or 

minus sign ir, Eq. (60). For simplicity, the subscripts on T are  dropped, 
2 

assuming that it is permissible to work with one wave at a time. The integral 

for becomes 

where 

(61) 

Examination of the exponent shows that the real part of u(?) approaches +DO 

a s  approaches 200 The saddle point of the integration is determined 

by; 

which yields: 

The contour of integration, c I is then chosen such that the path goes 

& through the saddle point, lb , and that the imaginary part of is constant. 

Following the method of s teepest  descent,  the solution for Eq. (61) is therefore 
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The electric field intensity in infinite domain mayo therefore, be obtained 

from : 

providing that a l l  parameters, including the differential operators a re  properly 

transformed to  the correct observer and source coordinates in the spherical 

coordinate system. 

CONCLUSION 

The results of separability studies in this work indicate that the dyadic- 

vector Helmholtz equation is solvable by the separation technique in four 

cylindrical coordinate systems, I t  may be noted that the solutions obtained by 

the separation technique a re  uncoupled, i,e. 

field of the waves without explicit knowledge of the other field, Such simpli- 

city may be contrqsted to the coupled field solution that often prevailed in the 

past .  In the past, free wave solutions in a bounded anisotropic plasma often 

have been obtained by direct manipulations of Maxwell's equations and the 

generalized Ohmas law 

ential  equations such that the fields are  coupled, i o  e, the electric field is 

solvable in terms of the magnetic field and vice versa. Except for some special  

it is possible to solve for one 

Such manipulations often led to second order differ- 
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cases ,- to  uncouple the fields, the order of the differential equations must be 

raised beyond two and thereby increases the difficulty in  obtaining solutions 

in simple form. 

The Green's dyadic constructed through sets of eigenfunctions for finite 

or semifinite domain problems is expressed in terms of differential operators 

which have the advantage of ease of operation over integral operatorsa 

The form of solutions for infinite domain problems as shown in Eq. (67) 

is not exactly of the s a m e  form obtained by Bunkin, (" The most noticeable 

difference lies in  the manner of operation, Bunkin's solution requires two 

second order differential operations, while Eq.  (67) requires only two first 

order differential operations ., However, the r e s u l t  of Eq, (67) compares favorably 

with that obtained by Bunkin e 

APPENDIX A 

The inhomogeneous equation is 

x yp E - % . E  z rs 
A Green's equation is assumed 

- 
Multiply from the right into Eq .  (A-1) and multiply from the left 

into Eq. (A-2) I subtract and integrate over the entire space  on the source coor- 

dinate yielding 

Using Green's theorem the  second integral can be transformed into a surface 

integral. If the Green's dyadic satisfies the same boundary conditions the  
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' E field statisfies , the surface integral vanishes ,, 

The dyadics 4 and i n  the third integral may be expressed in terns 

of their symmetrical components (subscript s> and antisymmetrical components 

(subscript a) 

@- 5) 
= 
6 being symmetric and reciprocal 

with respect to F and , it is found that 

and 

Thus, it is shown that for Eq,  (20) to hold, the third integral must also vanish, 

APPENDIX B 

E q s ,  (45) and (46) in essence  demand that the Green's dyadic be 

symmetrical, They also imply a condition for the ( s3 , S," 1 functions such 

that the solution for Eq,  (44) must be chosen to satisfy 

E q s ,  (45) and (46) along with E q ,  (B-1) imply 

VL0 = - u, 
and 

= - VI, V I  O 

9 

The symbolic form of the Green 's  dyadic, as is given in Eq, (51) 

be symmetric unless the source coordinates operator $"' and the observer 

cannot 
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c 8 .  . p .  - .- 
coordinates operator ' can  be interchanged, Of course,  Eqs (B-2) 

through (B-4) are not the only possible conditions that  m a y  force the Green's 

dyadic to be symmetric. 

The Green's dyadic is symmetric only in the coordinate system for which 

the  Green's dyadic is constructed, Using variational technique, a given 

Greenls dyadic may be transformed to  one that is valid for a problem of different 

boundary configuration in  a different coordinate system, But the symmetrical 

property of the original Green's dyadic is not necessar i ly  retained in the trans- 

formation. This is especially true in the case of the Green's dyadic for the 

infinite domain 
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